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Abstract

An objective of the High Performance Computing
and Communication Program at the NASA Langley
Research Center is to demonstrate multidisciplinary

shape and sizing optimization of a complete aerospace
vehicle configuration by using high-fidelity, finite-

element structural analysis and computational fluid
dynamics aerodynamic analysis. In a previous study, a

multi-disciplinary analysis system for a high-speed civil
transport was formulated to integrate a set of existing

discipline analysis codes, some of them
computationally intensive. This paper is an extension

of the previous study, in which the sensitivity analysis
for the coupled aerodynamic and structural analysis

problem is formulated and implemented. Uncoupled
stress sensitivities computed with a constant load vector

in a commercial finite element analysis code are
compared to coupled aeroelastic sensitivities computed

by finite differences. The computational expense of
these sensitivity calculation methods is discussed.

Nomenclature

ac Aerodynamic cruise load vector
am Aerodynamic maneuver (converged) load vector

fa Augmented structural load vector
fc Structural cruise load vector

fM Structural maneuver (converged) load vector
So Unloaded shape vector

Sc Cruise shape vector
s_t Maneuver (converged) shape vector

era Stress vector (due to augmented loads)

Uo Displacement (unloaded to cruise shape) vector
Ua Augmented displacement vector

Uc Cruise displacement vector
uM Maneuver (converged) displacement vector

v Independent design variables

Wc Cruise weight

wM Maneuver weight

Kc Stiffness matrix (cruise shape)
Ko Stiffness matrix (unloaded shape)
LF Inertial load factor (g's)

Introduction

One of the objectives of the High Performance

Computing and Communication Program (HPCCP) at
NASA Langley Research Center (LaRC) has been to

promote the use of advanced computing techniques to
rapidly solve the problem of multidisciplinary

optimization of aerospace vehicles. In 1992, the
HPCCP Computational Aerosciences (CAS) team at

LaRC began a multidisciplinary analysis and
optimization software project. Initially, the focus of the

CAS project was on the software integration system
used to integrate fast analysis on a simplified design

application. The sample application for this project was
a High Speed Civil Transport (HSCT). Over the years,

progressively more complex engineering analyses have
been incorporated. In 1997, the sample application
shifted to a more realistic model and higher fidelity

analyses and is referred to as the HSCT4.0 application.
The analysis formulation and preliminary results from

the HSCT4.0 application were presented in Refs. 1 and
2, respectively. However, sensitivity analysis was not
performed in Refs. 1 and 2.

As discussed in Refs. 1 and 2, analytical
sensitivities can be obtained from most of the analysis

codes by using automatic differentiation tools.
However, Ref. 1 discussed the one major stumbling
block in formulating the sensitivity analysis--obtaining

sensitivity derivatives of the converged aeroelastic
loads and using those derivatives in a commercial finite

element code. The aerodynamic pressures and
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structural deformations in the wing shape are mutually

dependent. Because of this coupling between
aerodynamic and structural responses, the sensitivity of

the aeroelastic loads is difficult to compute.

Researchers use one of two methods to compute these
aeroelastic sensitivity derivatives. For the first method,
researchers assume that the aeroelastic loads are

constant and then use exiting methods to obtain

sensitivity derivatives. In the second method,
researchers assume the loads vary and use finite

differences to obtain sensitivity derivatives. There has
been some research __ using the global sensitivity
equations (GSE 6) to account for the coupling of

aerodynamics and structures. In Refs. 4 and 5, the GSE

were applied to simplified HSCT models to compute
derivatives of aerodynamic coefficients. In this paper,

the effects of the coupled aeroelastic loads on the
computation of stress sensitivities will be examined.

In Refs. 1 and 2, the HSCT4.0 analysis consisted of
an integrated set of discipline codes and interface
codes. These codes were implemented in a CORBA-
Java computing environment known as CJOPT 7. The

present research does not use the CJOPT system;
instead, the discipline codes and interface codes are
implemented in the Phoenix Integration, Inc.'s
ModelCenter ®8. Implementation of the codes in

ModelCenter ® is not discussed in this paper. The work

presented in the current paper is referred to as the
HSCT4.1 application.

In the HSCT4.1 application, the coupling of the

aeroelastic loads in the stress derivatives is important

because both shape and structural design variables are
used in the sensitivity analysis. The present paper will
quantify the effect of aeroelastic coupling on stresses.

Coupled stress sensitivities obtained by finite difference
techniques (with loads varying) are compared with un-
coupled stress sensitivities obtained from a commercial

finite element code (with loads held constant).
First, an overview of the model and analysis wilt

be presented. Next, the coupled and uncoupled stress
sensitivity analysis formulation will be presented.

Finally, sample results for both the coupled and
uncoupled stress sensitivities are compared for both

shape and structural design variables.

Overview

HSCT 4.1 Model

The HSCT4.1 application uses the same linear
aerodynamic and finite element models as the HSCT4.0

application described in Refs. 1 and 2. The linear
aerodynamics grid and the finite element model used

for HSCT4.1 are shown in Figs. 1 and 2, respectively.
An aerodynamic surface grid of approximately 1100

grid points is used in the linear aerodynamics code
(USSAERO) 9. The aerodynamic model does not

include engines. The GENESIS ®t° finite element

analysis code (a product of VR&D, Inc.) uses the
40,000 degree-of-freedom (DOF) FEM for

displacement and stress response calculations. In this

FEM, the engines are modeled as masses on beam
elements. Seven laterally symmetric load conditions
are used-- one cruise load condition and six maneuver

conditions (three at +2.5g and three at -l.0g). Note that
the taxi condition used in Refs. 1 and 2 is not used in

the present work.

Fig. 1. HSCT4.1 linear aerodynamic model.

Fig. 2. ttSCT4.1 finite element model.

Qptimization Problem Description
The objective function of the HSCT4.1

optimization problem is to minimize the aircraft gross
takeoff weight (GTOW) subject to stress constraints.

The HSCT4.1 application has 271 design variables for
optimization--244 structural thickness variables and 27

shape variables. To limit the number of independent
structural design variables, the optimization model is

divided into 61 design variable zones. Each zone
consists of several finite elements. Thirty-nine zones
are located on the fuselage, and twenty-two zones are

located on the wing (half are on the upper surface and
the other half are on the lower surface). Within each

zone, four structural design variables are used. These
structural design variables consist of three ply-thickness
variables (a 0° fiber variable, a 45 ° fiber variable, and a

90 ° fiber variable with a dependent -45 ° fiber variable
set equal to the 45 ° variable) and a core thickness

variable. The 0° and 90 ° ply orientations at various
locations on the model and the composite laminate

stacking sequences are shown in Fig. 3.
The 27 shape design variables are divided into two

sets. The first set contains 9 planform design variables-

the root chord, the outboard break chord, the tip chord,

the distance from the semispan to the outboard break,
the leading edge sweep of the inboard wing panel, the

leading edge sweep of the outboard wing panel, the
total projected area of the wing, the fuselage nose
length, and the fuselage tail length. The second set
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consistsof threesetsof sixvariablesthatcontrolthe
camber,thickness,andshearofthewingairfoil.

,_ Outboard Wing

90_ Fuselage _..../j" _ __

o _ t----k_

....... _ 90_ _ A Inboard Wing

mooalawmg 0/'-_ x t_ _

Face Sheet

I 90 °

Face T core

45 °

o:,°
Fig. 3. Ply orientations and composite laminate

stacking sequence.

HSCT4. ! Analysis Process
As discussed in Refs. 1 and 2, the HSCT4.0

analysis is formulated as a sequence of processes in the
data flow diagrams, as shown in Fig. 4. The HSCT4.1

analysis is focused on the difficult aerodynamic-

structures analysis-coupling problem and uses the
analysis processes shown by shaded circles in Fig. 4.

By convention, this paper uses italics for process names
from Fig. 4.

The HSCT 4.1 Analysis process is started from the

top of the data flow (Fig. 4) where the design variable
values are prescribed. First, the Geometry process is

used to derive updated geometric grids and FEM

section properties from the design variables. Next, the
Weights process uses the derived FEM grid and section

properties to calculate detailed weights and the center
of gravity (c.g.) locations for specified flight conditions.

Theoretical FEM weights are computed for each node
from the FEM data. A reference as-built weight

increment is added to the theoretical FEM weight at

each node to produce the as-built weight.
Next the Rigid Trim process is executed for the

cruise condition to determine the configuration angle of
attack and the tail deflection angle that combine to yield
a lift equal to the weight, with no net pitching moment.

The linear aerodynamics code is used to compute the

trimmed aerodynamic pressures on the cruise shape
aerodynamic grid. These pressures are then transferred

from the aerodynamic grid points to the FEM nodal
forces in the z-direction. Inertial forces (nodal weights
times g-factor) are added to the aerodynamic forces to
create the structural load vector. This structural load

vector is used by the Displacements process to compute

the unloaded shape of the aircraft (see Appendix A for
further details). These cruise displacements are saved
as a reference set for the Loads Convergence process.

In the Loads Convergence process, aeroelastic trim

calculations are performed for the six noncruise toad

conditions, to produce the aeroelastically converged
loads on the aircraft (see Appendix B for further
details). Forces representing cabin pressure are added

to these converged loads and are multiplied by a factor
of safety (1.5). These augmented loads are used in the
Stress & Buckling process to compute stress and buck-

ling constraints for all elements contained in the 61

design zones on the fuselage and wing. Buckling
constraints are not considered in this paper.

HSCT4.1 Sensitivity Analysis Formulation
In this section, sensitivities (first order derivatives

with respect to the design variables) are formulated for

the objective function (GTOW) and the stress con-
straints. First, the weight sensitivities are formulated

analytically. Then the stress sensitivities for both the
coupled and uncoupled methods are formulated.

Fig. 4. Analysis' Process.

Weight Sensitivity Formulation
In the HSCT4.1 system, structural weight sensi-

tivities are computed analytically from the finite

element dimensions and material properties using chain
rule differentiation. Non-structural weights (fuel,

payload, and non-modeled structures) are assumed to be
constant (i.e. non-structural sensitivities are zero).

Only shell elements are sized by the structural

design variables. Because the weight of each of these
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elementsis a linearfunctionof thestructuraldesign
variables,theweightsensitivityforthoseelementswith
respectto a structuraldesignvariableis simplythe
elementareamultipliedbythenumberofpliesandthe
densityofthatply.

Elementweightsensitivitieswith respectto the
shapedesignvariablesarecomputedbychainruledif-
ferentiationoftheequationsdefiningthedimensionsof
theelement(lengthforbeams,areaforshells,andvol-
umeforsolidelements).TheGeometry process is used

to compute the derivatives of the node locations with

respect to the shape design variables. Element weights
and weight sensitivities are extrapolated to the finite
element nodes by the weight code. The element weight
sensitivities are totaled to obtain the GTOW sensitivity.

Stress Sensitivity Formulation

Structural stresses, Oa, are functions of the

displacements. Therefore, the stresses and stress

sensitivity derivatives (dOrA�dr) are defined as follows:

OA = Oa(llA) (l)

dora - Ocra dltA (2)

dv _u a dv

The relationship between the stresses and the displace-
ments are defined in GENESIS®; therefore, it is only

necessary to study the displacement derivatives
(duA/dV). Linear static structural displacements at
converged maneuver conditions (UA) are computed
within GENESIS ® from the stiffness matrix (Kc) and

the augmented loads (fa) using Equations 3 and 4.

Kc UA = fA (3)

u A = [Kc]lfa (4)

Derivatives of UA with respect to the design variable

vector (v) are obtained by differentiating Equation 3:

K dua + - (5)dKc Ua d fa
c dv T dv

Rearranging Equation 5 gives:

du A _ [Kc_ 1 dfA r 1-1 dX C

dv dv [Kcj ---_ ua (6)

In Equation 6, the displacement derivative is composed

of two terms. One term requires the force derivative,
which is derived from the coupled aerodynamic and

structural analyses, and is referred to as the coupled

sensitivity term in Equation 7.

d v Coupled

The other term requires the stiffness matrix derivative,
which is determined from structural terms only, and is
referred to as the uncoupled sensitivity term, Equation
8.

du a ] r _-1d Kc
-_v ;_.cou_,_ = - [KcJ --_7-vUA (8)

The relationship between structural design vari-
ables and the stiffness matrix can be set up as direct

input to GENESIS ®. The Geometry process was used

to generate relationships between the nodes of the stiff-

ness matrix and the shape design variables as another
set of GENESIS ® input. Therefore, the uncoupled

sensitivity term (Equation 8) can be computed directly
using the sensitivity analysis capability in GENESIS ®.

The coupled sensitivity term (Equation 7) is similar
to the displacement calculation equation (Equation 4).
Therefore, GENESIS ® can be used to compute the

coupled sensitivity term in the displacement sensitivity
equation from a linear static finite element displace-

ment analysis using the load sensitivities as a nodal
force vector. One complication of this method is that
the sensitivities with respect to each design variable
must be defined as a separate load case (i.e. one load

case is required per design variable). Another compli-
cation is the fact that the augmented load sensitivity

(dfa Idv) must be computed outside of GENESIS ®.

The augmented loads (1_) are computed from the

converged maneuver loads (fM), the factor of safety

(1.5) and the cabin pressures (constant); therefore the
derivatives of the augmented loads are:

dfa - 1.5 dfu (9)
dv dv

In the Loads Convergence process, the maneuver

loads (fM) and maneuver displacements (UM) are

mutually dependent. The nature of this dependency is
discussed in Appendix B, and is represented in

Equations 10 and I 1:
,,. = uM(_rM,v) (m)
fu = fM6'U 'v) (11)

Because of the coupling offM and Uu, computation

of dfMIdv is complicated and beyond the scope of this

paper. The total stress sensitivity derivative (dcraldv) is

obtained by substituting &_aldv from Equation 6 into
Equation 2. For the uncoupled stress sensitivity
derivative, dualdv from Equation 8 are used in Equation
2 instead. In the next section, results are presented for

analytically computed uncoupled stress sensitivities.
Coupling effects are shown by parametric stress

analyses in the next section.

HSCT4.1 Weight and Stress Results

Analysis results were presented in Ref. 2. To
validate the HSCT4.1 Analysis process, loads

convergence displacements and stress results from Ref.
2 for the baseline configuration were compared with
HSCT4.1 results. The results from the two analyses

agreed with each other. In Ref. 2, ten iterations were
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usedintheLoads Convergence process. Therefore, all

results in this paper used ten iterations in the Loads
Convergence process. Both parametrically- and

analytically-computed GTOW and stress results are

presented in this section.
Parametric studies were performed by perturbing

one design variable at a time from its baseline value and
then running the complete HSCT 4.1 Analysis. In the

parametric studies, design variables are perturbed by a
maximum of 1% from their baseline values.

Structural responses (r, referred to as analytical
responses) are computed from Equation 12. Sensitivity

analyses are used to compute first order derivatives of
the response functions (dr/dv) at the baseline design

point (V_,seti,e).
dr

r(v) = -_v(,,-','B,,5¢,,,¢) + rn,.,¢,,,¢ (12)

Due to the large number of design variables
available for study, results for a small subset of the

design variables are presented in this paper; four of the
twenty-seven shape design variables (two chord

lengths, one span length, and the wing planform area)
are selected for study. Further, only two of the 244

structural design variables (ply thicknesses in the

design variable zone at the wing break where the largest
stresses occurred) are selected for study.

Weight Variations with Design Variables
Weight results are presented as the GTOW

normalized by the baseline GTOW. GTOW is plotted
as a function of the six selected design variables in

Figs. 5 to 10. The analytic GTOW curves are computed

using Equation 12 (linear approximations). Note that
the weight sensitivity calculations do not involve
aeroelastic coupling. The analytic curves agreed with

the parametric curves. The GTOW axis is different in
Figs. 5 to 8 (variations in shape variables) due to the

large difference in the GTOW variations for each
variable. As described in the Weight Sensitivity section

and shown in Figs. 9 and 10 (variations in structural

variables), weight is a linear function of the each of the
structural design variables.

]
Z

1.00015

1.00010

1.00005

1.00000

0.99995

0.99990 J Design Variable 3

(R°°tlCh°rd)_ I

0.99985 _ _ .... _..

> 10.00000 __, ........... _- ........ *,

0.990 0.995 1.000 1.005 1.010

Design Variable 3 (Normalized)

Fig. 5. GTOW variation with design variable 3.
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0.00000 t ...... _ _, ,,--'- .....

0.990 0.995 1.000 1.005 1.010

Design Variable 4 (Normalized)

Fig. 6. GTOW variation with design variable 4.
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Fig. 7. GTOW variation with design variable 5.
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1.0004 r
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_ 0.9998
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0.0000 ...... + ........ _, -_-_-_-_

0.990 0.995 1.000 1.005 1.010

Design Variable 7 (Normalized)

Fig. 8. GTOW variation with design variable 7.
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0.990 0.995 1.000 1.005 1.010

Design Variable 184 (Normalized)

Fig. 9. GTOW variation with design variable 184.

-o- Parametric -- Analytic

_ 1.00001

00o00
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_ 0.99998 _" (+45° Plies in_

0._ _ ..... _ ...... t _ ' _

0.990 0.995 1.000 1.005 1.010

Design Variable 185 (Normalized)

Fig. 10. GTOW variation with design variable 185.

Stress Variations with Design Variables
Stress results are presented as stress failure index

(SFI) values (Ref. 2). In the Analysis process, stresses

are computed for eight plies of 2260 sized elements for
six load conditions. Due to the large number of results

(108,480 responses), only subsets of these results are

presented in this paper. Stress results are shown only
for one of the three +2.5g maneuver load conditions

and for three elements (see Fig. 11) with large stress

responses.

Zone 40_//_

Upper Surface _ _"- 25035 _k_ -

Lower Surface 25082

Zone 41 / "xN... ]

Fig. 11. Elements selected for stress responses.

In Figs. 12 to 29, parametrically and analytically

computed SFI values are plotted as functions of the

design variables. All analytical SFI curves are
determined using Equation 12 where the uncoupled
stress sensitivity (obtained from GENESIS ® using

Equations 2 and 8) is used for the response sensitivity
term (dr�dr). In the following plots this stress

sensitivity is represented as the slope of the analytic
stress curve.

SFI responses for element 5140 (on the fuselage)

are plotted in Figs. 12 to 17. The ranges of the SFI axes

in Figs. 12 to 15 are identical for comparison purposes.
The parametric SFI response curves in Figs. 12 to 15
are shallow curves (not quite linear). It is noted that the

slope of the parametric curves at the baseline design

point (normalized design variable value of 1.0) are
different from the slope of the analytic (uncoupled)
curve. The difference in the slopes varies from one

variable to another, but in general the difference is

significant. The ranges of the SFI axes in Figs. 16 and
17 are magnified from Figs. 12 to 15 because the

sensitivity of the SFI in the fuselage is much smaller
with respect to changes in the upper wing surface (zone
40) ply thicknesses. Because the sensitivity with

respect to variables 184 and 185 is very small, the SFI
response is more erratic. Some of this noise is the
result of round-off error due to passing results from one

analysis code to another using low-precision text

output. This noise could also be due to the nonlinearity
of the SFI response.

Note that the differences in the slopes of the

parametric and analytic (uncoupled) SFI response
curves are larger in Figs. 12 to 15 than in Figs. 16 and
17. Thus, the coupling effect (due to aeroelastic forces)

seems to be larger for the shape design variables than
for the structural design variables. The aeroelastic

forces are a function of the weight and the HSCT shape.

Shape variables affect both the shape and the weight,
while the structural design variables only affect the

weight. Therefore, the shape variables have a larger
coupling effect for the SFI responses than the structural
variables; a conclusion, which is supported by Figs. 12
to 17.
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Fig. 12. SFI variation with design variable 3 for
element 5140.
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Fig. 13. SFI variation with design variable 4 for
element 5140.
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Fig. 14. SFI variation with design variable 5 for
element 5140.
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Fig. 15. SFI variation with design variable 7 for
element 5140.
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Fig. 16. SFI variation with design variable 184 for
element 5140.
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Fig. 17. SFI variation with design variable 185 for
element 5140.

SFI responses for element 25035 (on the upper

wing surface, see Fig. 11) are plotted in Figs. 18 to 23.
The ranges of the SFI axes in Figs. 18 to 21 are
identical for comparison purposes. The parametric SFI

responses in Figs. 18 to 21 are nearly linear functions
within the selected design variable range. Again, the

slopes of the parametric SFI curves are different from

the slopes of the analytic (uncoupled) SFI responses.
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Therangesof theSFIaxesin Figs.22and23are
differentthanFigs.18to21becausethesensitivitiesare
smaller.UnliketheSFIsensitivitiesinFigs.16and17,
thesensitivitiesinFigs.22and23arelargerthanthe
numericalnoisein the SFI variation. Thelarger
sensitivitiesinFigs.22and23arebecausethethickness
ofelement25035issizedbystructuraldesignvariables
184and185.Asin theearlierfigures,theeffectofthe
couplingtermin theSFIsensitivitiesis largerfor the
shapevariablesthanforthestructuralvariables.
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Fig. 18. SFI variation with design variable 3 for
element 25035.
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Fig. 19. SFI variation with design variable 4 for
element 25035.
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Fig. 20. SFI variation with design variable 5 for
element 25035.
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Fig. 21. SFI variation with design variable 7 for
element 25035.
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Fig. 22. SFI variation with design variable 184 for
element 25035.
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Fig. 23. SFI variation with design variable 185 for
element 25035.

SFI responses for element 25082 (on the lower

wing surface, see Fig. 11) are plotted in Figs. 24 to 29.

The ranges of the SFI axes in Figs. 24 to 27 are
identical for comparison purposes. The parametric SFI

responses in Figs. 24 to 27 are nearly linear functions
within the selected design variable range. Again, the

slopes of the parametric SFI curves are slightly
different from the slopes of the analytic (uncoupled)
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SFIresponses.Therangesof theSFIaxesinFigs.28
and29aremagnifiedfromFigs.24to 27becausethe
sensitivityoftheSFIinthelowerwingsurfaceismuch
smallerwith respectto changesin theupperwing
surface(zone40)ply thicknesses.Asbefore,because
thesensitivitywithrespecttovariables184and185are
verysmall,theeffectsof noisein theSFIresponseis
morepronounced.Asin theearlierfigures,theeffect
of the couplingterm (Equation 7) in the SFI

sensitivities is larger for the shape variables than for the
structural variables.

u°i _

0.990 0.995 1.04)0 1.005 1.010

Design Variable 3 (Normalized)

Fig. 24. SFI variation with design variable 3 for
element 25082.
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Fig. 25. SFI variation with design variable 4 for
element 25082.
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Fig. 26. SFI variation with design variable 5 for
element 25082.
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Fig. 27. SFI variation with design variable 7 for
element 25082.
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Fig. 28. SFI variation with design variable 184 for
element 25082.
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Fig. 29. SFI variation with design variable 185 for
element 25082.

Performance of the analysis and sensitivity
calculation methods is shown in Table 1. Computing
the stress sensitivities with respect to all 271 design

variables by finite differences requires 272 executions
of the entire Analysis process, about 1768 hours. In

comparison, the analytic (uncoupled) stress sensitivity
calculation requires only 7.0 hours. Thus while not as
accurate, the computational expense of the analytic

(uncoupled) sensitivity calculation is much lower than
finite difference sensitivities.

Table 1.

Process

Aero.

Disp.
Stress

Stress/_v

CPU Time Required for Analyses
CPU Execution Time (hrs.)

Analysis Finite
Difference

Sensitivity,
6.10 1659.20

0.37 99.73

0.03 9.07

0.00 0.00

Uncoupled
Stress

Sensitivity
6.10

0.37

0.03

0.50

Total 6.50 1768.00 7.00

Concluding Remarks

In this paper, a system for coupled aerodynamic
and structural analysis of a HSCT using the

ModelCenter ® framework is presented. Formulations

for weight and stress sensitivity derivatives are

presented. The stress sensitivities are shown to con-
stitute both uncoupled structural and coupled aero-
structural derivative terms. Analytically computed

GTOW sensitivities are shown to match slopes of

parametric GTOW curves well. Parametric and

analytic (uncoupled) stress responses are compared and
demonstrate that the aero-structural coupling has a

significant effect on the stress responses. The coupling
effect is larger for the shape design variables than for
the structural design variables. Further research is
recommended in analytic calculation of the coupled

terms in the stress sensitivities and in parallel execution

of the HSCT4.1 system.
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Appendix A - Unloaded Shape Computation

Both the geometry of the aerodynamic model
used in the Rigid Trim process and the FEM used in the

Displacements process are based on the l-g cruise
shape (Sc, see Fig. A-l), which is described by the

shape design variables.

Sc z ____ y

Fig. A-1. Cruise Shape.

In order to obtain accurate stress responses from a
structural analysis, the displacements must be computed
relative to the unloaded shape (So, see Fig. A-2). The

unloaded shape is the aircraft shape that deforms to the
cruise shape when cruise loads (fc) are applied.

so

Fig. A-2. Unloaded Shape.

The cruise loads are computed from Equation A. 1:

fc = ac - Wc (A.I)

where ac represents the aerodynamic cruise loads, and

wc represents the inertial loads. The inertial loads
(nodal cruise weight) are subtracted from ac because

the weight acts in the negative z direction.

The shape change (displacements) from the
unloaded shape to the cruise shape is given by the

following equation:

sc-s o = uo = [Ko_'fc (A.2)

Unfortunately, the stiffness matrix of the

unloaded shape (Ko) is unknown. Assuming that the
FEM is geometrically linear, the differences between
the stiffness matrices of the unloaded shape (Ko) and
the cruise shape (Kc) are negligible. Using this

assumption, the cruise loads (fc) can be applied to the
cruise shape stiffness matrix (Kc) to produce a set of

cruise displacements (Uc).

u_ = [Xc_l fc = [Ko_l fc = uo (A.3)

Thus, the unloaded shape is given by the cruise shape

(Sc) minus the cruise displacement vector (Uc).

so = sc-u c = sc-u o (A.4)

Appendix B - Loads Convergence
In this appendix, load conditions 2 through 7 are
referred to as maneuver conditions, and the

corresponding loads are converted to forces acting at
FEM nodes. At maneuver conditions, the aircraft has

shape sM and is subjected to maneuver loads fM
(illustrated in Fig. B- 1).

Fig. B-1. Maneuver Shape.

The maneuver loads are computed from Equation B. 1:

fM = tim -- LF wM (B. 1)

where aM represents the aerodynamic maneuver loads;
LF represents the maneuver load factor, and wM

represents the nodal weight at maneuver conditions
(GTOW). The Weights process is used to compute the
nodal GTOW. The inertial loads (LF multiplied by
nodal GTOW) are subtracted from aM because the

weight acts along the negative z direction.

The maneuver shape (sM) and aerodynamic
maneuver loads (aM) are unknowns that are determined

using the Loads Convergence process. The maneuver
shape is the net aircraft shape used for the aerodynamic

analysis and consistent with the deformed structural
shape produced by the aerodynamic loads.

The maneuver displacements are produced by
deforming the unloaded shape (So) to the maneuver

shape (sM) as illustrated in Fig. B-2.

Fig. B-2. Delta Displacements.

The maneuver displacements (uM) are computed using
equation B.2:

uM = sM-s o = [Ko_'f_ (B.2)

The unloaded stiffness matrix (Ko) is unknown, but by
applying the geometric linearity assumption from
Appendix A, the cruise stiffness matrix (Kc) can be

used in place of Ko to calculate the maneuver
displacements (uM).

In the aerodynamics analysis, the maneuver
shape (sM) must be used to compute the aerodynamic
maneuver forces (aM). The maneuver shape is obtained

by perturbing the existing aerodynamic model, which is

based on the cruise shape (sc). The displacements
(referred to as "delta displacements," guM) used to

perturb the aerodynamic model are computed from
equation A.4 (in Appendix A) and equation B.3.

: sM-s --
(B.4)

: 11 M -- ll c
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